一、 索引的设计原则
1. 字段的数值有唯一性的限制
索引本身可以起到约束的作用,比如唯一索引、主键索引都可以起到唯一性约束的,因此在我们的数据表中,如果某个字段是唯一的
,就可以直接创建唯一性索引
,或者主键索引
。这样可以更快速地通过该索引来确定某条记录。
业务上具有唯一特性的字段,即使是组合字段,也必须建成唯一索引。(来源:Alibaba)
说明:不要以为唯一索引影响了insert速度,这个速度损耗可以忽略,但提高查找速度是明显的。
2. 频繁作为 WHERE 查询条件的字段
某个字段在SELECT语句的 WHERE 条件中经常被使用到,那么就需要给这个字段创建索引了。尤其是在数据量大的情况下,创建普通索引就可以大幅提升数据查询的效率。
3. 经常 GROUP BY 和 ORDER BY 的列
索引就是让数据按照某种顺序进行存储或检索,因此当我们使用 GROUP BY 对数据进行分组查询,或者使用 ORDER BY 对数据进行排序的时候,就需要对分组或者排序的字段进行索引
。如果待排序的列有多个,那么可以在这些列上建立组合索引
。
同样,如果是 ORDER BY,也需要对字段创建索引。
如果同时有 GROUP BY和 ORDER BY的情况:比如我们按照 student_id 进行分组,同时按照创建时间降序的方式进行排序,这时我们就需要同时进行 GROUP BY和 ORDER BY,那么是不是需要单独创建 student id 的索引和create_time 的索引呢?
当我们对 student_id 和 create_time 分别创建索引,执行下面的 SQL 查询:
MySQL 优化器在处理单表查询时,通常会选择一个它认为 “成本最低” 的索引,原因是:
索引的本质是加速查询,但使用多个索引可能需要额外的合并操作(如交集、并集),反而增加开销。
对于
GROUP BY
、ORDER BY
等操作,单个合适的索引(如联合索引)往往比多个单字段索引更高效。
4. UPDATE、DELETE 的 WHERE 条件列
对数据按照某个条件进行查询后再进行 UPDATE 或 DELETE 的操作,如果对 WHERE 字段创建了索引,就能大幅提升效率。原理是因为我们需要先根据 WHERE 条件列检索出来这条记录,然后再对它进行更新或删除。如果进行更新的时候,更新的字段是非索引字段,提升的效率会更明显,这是因为非索引字段更新不需要对索引进行维护。
5.DISTINCT 字段需要创建索引
有时候我们需要对某个字段进行去重,使用 DISTINCT,那么对这个字段创建索引,也会提升查询效率。
6. 多表 JOIN 连接操作时,创建索引注意事项
首先, 连接表的数量尽量不要超过 3 张
,因为每增加一张表就相当于增加了一次嵌套的循环,数量级增 长会非常快,严重影响查询的效率。
其次, 对 WHERE 条件创建索引
,因为 WHERE 才是对数据条件的过滤。如果在数据量非常大的情况下, 没有 WHERE 条件过滤是非常可怕的。
最后, 对用于连接的字段创建索引
,并且该字段在多张表中的 类型必须一致 。比如 course_id 在 student_info 表和 course 表中都为 int(11) 类型,而不能一个为 int 另一个为 varchar 类型。
举个例子,如果我们只对 student_id 创建索引,执行 SQL 语句:
SELECT s.course_id, name, s.student_id, c.course_name
FROM student_info s JOIN course c
ON s.course_id = c.course_id
WHERE name = '462eed7ac6e791292a79';
运行结果(1 条数据,运行时间 0.189s )
这里我们对 name 创建索引,再执行上面的 SQL 语句,运行时间为 0.002s 。
7. 使用列的类型小的创建索引
我们这里所说类型大小
指的就是该类型表示的数据范围的大小。
- 数据类型越小,在查询时进行的比较操作越快
- 数据类型越小,索引占用的存储空间就越少,在一个数据页内就可放下更多的记录
,从而减少磁I/O
带来的性能损耗,也就意味着可以把更多的数据页缓存在内存中,从而加快读写效率。
这个建议对于表主键来说更加适用
,因为不仅是聚簇索引中会存储主键值,其他所有的二级索引的节点处都会存储一份记录的主键值,如果主键使用更小的数据类型,也就意味着节省更多的存储空间和更高效的I/O。
8. 使用字符串前缀创建索引
假设我们的字符串很长,那存储一个字符串就需要占用很大的存储空间。在我们需要为这个字符串列建立索引时,那就意味着在对应的B+树中有这么两个问题:
·B+树索引中的记录需要把该列的完整字符串存储起来,更费时。而且字符串越长,在索引中占用的存储空间越大。
·如果B+树索引中索引列存储的字符串很长,那在做字符串 比较时会占用更多的时间。我们可以通过截取字段的前面一部分内容建立索引,这个就叫前缀索引。这样在查找记录时虽然不能精确的定位到记录的位置,但是能定位到相应前缀所在的位置,然后根据前缀相同的记录的主键值回表查询完整的字符串值。既 节约空间,又 减少了字符串的比较时间,还大体能解决排序的问题。
例如,TEXT和BLOG类型的字段,进行全文检索会很浪费时间,如果只检索字段前面的若干字符,这样可以提高检索速度。
创建一张商户表,因为地址字段比较长,在地址字段上建立前缀索引。
拓展:Alibaba《Java开发手册》
【强制
】在 varchar 字段上建立索引时,必须指定索引长度,没必要对全字段建立索引,根据实际文本区分度决定索引长度。
说明:索引的长度与区分度是一对矛盾体,一般对字符串类型数据,长度为 20 的索引,区分度会高达 90% 以上
。
9. 区分度高(散列性高)的列适合作为索引
列的基数
指的是某一列中不重复数据的个数,比方说某个列包含值2,5,8,2,5,8,2,5,8
,虽然有9
条记录,但该列的基数却是3
。也就是说,在记录行数一定的情况下,列的基数越大,该列中的值越分散;列的基数越小,该列中的值越集中。这个列的基数指标非常重要,直接影响我们是否能有效的利用索引。最好为列的基数大的列建立索引,为基数太小的列建立索引效果可能不好。
可以使用公式select count(distinct a)/count(*) from t1
计算区分度,越接近1越好,一般超过33%
就算是比较高效的索引了。
拓展:联合索引把区分度高(散列性高)的列放在前面。
10. 使用最频繁的列放到联合索引的左侧
11. 在多个字段都要创建索引的情况下,联合索引优于单值索引
12. 限制索引的数目
在实际工作中,我们也需要注意平衡,索引的数目不是越多越好。我们需要限制每张表上的索引数量,建议单张表索引数量不超过6个
。原因:
每个索引都需要占用
磁盘空间
,索引越多,需要的磁盘空间就越大。索引会影响
INSERT、DELETE、UPDATE等语句的性能
,因为表中的数据更改的同时,索引也会进行调整和更新,会造成负担。优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的
索引来进行评估
,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,会增加MySQL优化器生成执行计划时间,降低查询性能。